
Tracy - UNIX system call tracing

Merlijn Wajer

August 2, 2013

August 2, 2013 1 / 25

Table of contents

I Introduction (motivation, use cases)

I Background (system calls, ptrace)

I Features

I Implementation details

I Future applications

I Future work

August 2, 2013 2 / 25

Introduction

Motivation:

I Cross architecture, cross platform system call tracing

I ptrace is not cross architecture

Possible use cases:

I Jails per process(group)

I Transparent routing of I/O

I Debugging (visualisation, replaying)

I Fault injection

I I/O logging

August 2, 2013 3 / 25

Introduction

Motivation:

I Cross architecture, cross platform system call tracing

I ptrace is not cross architecture

Possible use cases:

I Jails per process(group)

I Transparent routing of I/O

I Debugging (visualisation, replaying)

I Fault injection

I I/O logging

August 2, 2013 3 / 25

Background

System call:

I Fundamental interface between an application and the (Linux)
kernel

I Interaction with hardware, other processes

I Invoked with a system call instruction or interrupt

Examples: open, write, socket, fork, wait

August 2, 2013 4 / 25

Background II

ptrace(2):

I System call: process trace
I Observing and controlling the execution of another process

I Trap on every instruction; or
I Trap on syscalls and signals

I Not POSIX

I No uniform API

Tracy does make use of ptrace on every platform that Tracy
supports

August 2, 2013 5 / 25

Background II

ptrace(2):

I System call: process trace
I Observing and controlling the execution of another process

I Trap on every instruction; or
I Trap on syscalls and signals

I Not POSIX

I No uniform API

Tracy does make use of ptrace on every platform that Tracy
supports

August 2, 2013 5 / 25

Background III

ptrace(2) allows Tracy to:

I Trap on system call instructions

I Modify registers and memory

I Control the signals sent to the program

I Spawn new processes that are traced immediately or to attach
to running processes

August 2, 2013 6 / 25

Features of Tracy

I Event based (syscalls and signals)

I Syscalls, signals can be hooked, as opposed to getting an
event for everything

tracy_set_hook(tracy, "read", TRACY_ABI_NATIVE,

&read_hook);

I System call injection:

tracy_inject_syscall(child, __NR_getpid, NULL, &pid);

I (Fast) memory access to process being traced

tracy_read_mem(child, dest, src, sizeof(char) * 10);

I Support for x86, AMD64 and ARM.

I Experimental bindings for Python

August 2, 2013 7 / 25

Features of Tracy

I Event based (syscalls and signals)

I Syscalls, signals can be hooked, as opposed to getting an
event for everything

tracy_set_hook(tracy, "read", TRACY_ABI_NATIVE,

&read_hook);

I System call injection:

tracy_inject_syscall(child, __NR_getpid, NULL, &pid);

I (Fast) memory access to process being traced

tracy_read_mem(child, dest, src, sizeof(char) * 10);

I Support for x86, AMD64 and ARM.

I Experimental bindings for Python

August 2, 2013 7 / 25

Features of Tracy

I Event based (syscalls and signals)

I Syscalls, signals can be hooked, as opposed to getting an
event for everything

tracy_set_hook(tracy, "read", TRACY_ABI_NATIVE,

&read_hook);

I System call injection:

tracy_inject_syscall(child, __NR_getpid, NULL, &pid);

I (Fast) memory access to process being traced

tracy_read_mem(child, dest, src, sizeof(char) * 10);

I Support for x86, AMD64 and ARM.

I Experimental bindings for Python

August 2, 2013 7 / 25

Features of Tracy

I Event based (syscalls and signals)

I Syscalls, signals can be hooked, as opposed to getting an
event for everything

tracy_set_hook(tracy, "read", TRACY_ABI_NATIVE,

&read_hook);

I System call injection:

tracy_inject_syscall(child, __NR_getpid, NULL, &pid);

I (Fast) memory access to process being traced

tracy_read_mem(child, dest, src, sizeof(char) * 10);

I Support for x86, AMD64 and ARM.

I Experimental bindings for Python

August 2, 2013 7 / 25

Features of Tracy

I Event based (syscalls and signals)

I Syscalls, signals can be hooked, as opposed to getting an
event for everything

tracy_set_hook(tracy, "read", TRACY_ABI_NATIVE,

&read_hook);

I System call injection:

tracy_inject_syscall(child, __NR_getpid, NULL, &pid);

I (Fast) memory access to process being traced

tracy_read_mem(child, dest, src, sizeof(char) * 10);

I Support for x86, AMD64 and ARM.

I Experimental bindings for Python

August 2, 2013 7 / 25

Jargon

I tracee: program being traced

I tracer: program tracing another program

Tracy is not the “tracee”!

August 2, 2013 8 / 25

Jargon

I tracee: program being traced

I tracer: program tracing another program

Tracy is not the “tracee”!

August 2, 2013 8 / 25

Implementation: injection

ptrace stops tracee before and after system call, main idea:

I When program performs a system call

I Replace system call number and arguments

I After completion: “restore” to previous state, including ip

Distinguish between “sync” and “async” injection:

I Synchronous injection blocks

I Asynchronous injection returns immediately, generates event
at a later time

August 2, 2013 9 / 25

Implementation: injection

ptrace stops tracee before and after system call, main idea:

I When program performs a system call

I Replace system call number and arguments

I After completion: “restore” to previous state, including ip

Distinguish between “sync” and “async” injection:

I Synchronous injection blocks

I Asynchronous injection returns immediately, generates event
at a later time

August 2, 2013 9 / 25

Implementation: pre-injection

Figure : Injection from pre-system call

August 2, 2013 10 / 25

Implementation: memory access

Memory access using:

I ptrace (POKETEXT, PEEKTEXT)

Slow!

I /proc/PID/mem
Requires kernel ≥ 2.6.39

I process vm readv and process vm writev
Requires kernel ≥ 3.6

August 2, 2013 11 / 25

Implementation: memory access

Memory access using:

I ptrace (POKETEXT, PEEKTEXT)
Slow!

I /proc/PID/mem
Requires kernel ≥ 2.6.39

I process vm readv and process vm writev
Requires kernel ≥ 3.6

August 2, 2013 11 / 25

Implementation: memory access

Memory access using:

I ptrace (POKETEXT, PEEKTEXT)
Slow!

I /proc/PID/mem

Requires kernel ≥ 2.6.39

I process vm readv and process vm writev
Requires kernel ≥ 3.6

August 2, 2013 11 / 25

Implementation: memory access

Memory access using:

I ptrace (POKETEXT, PEEKTEXT)
Slow!

I /proc/PID/mem
Requires kernel ≥ 2.6.39

I process vm readv and process vm writev
Requires kernel ≥ 3.6

August 2, 2013 11 / 25

Implementation: memory access

Memory access using:

I ptrace (POKETEXT, PEEKTEXT)
Slow!

I /proc/PID/mem
Requires kernel ≥ 2.6.39

I process vm readv and process vm writev

Requires kernel ≥ 3.6

August 2, 2013 11 / 25

Implementation: memory access

Memory access using:

I ptrace (POKETEXT, PEEKTEXT)
Slow!

I /proc/PID/mem
Requires kernel ≥ 2.6.39

I process vm readv and process vm writev
Requires kernel ≥ 3.6

August 2, 2013 11 / 25

Memory sharing

Race condition: memory (pointed to by syscall arg) may be
modified after “verification”

Solution:

I Copy over to memory which tracee can only read from

I Change syscall arguments

I Read-Only for tracee

I Read-Write for tracer

August 2, 2013 12 / 25

Memory sharing

Race condition: memory (pointed to by syscall arg) may be
modified after “verification”

Solution:

I Copy over to memory which tracee can only read from

I Change syscall arguments

I Read-Only for tracee

I Read-Write for tracer

August 2, 2013 12 / 25

Safe-fork

Problem: Tracing children created with fork

Linux has feature to automagically trace created children; other
platforms do not

Solution: Run syscalls like fork in a controlled environment: spin
child execution until we have the pid of the child.

August 2, 2013 13 / 25

Safe-fork

Problem: Tracing children created with fork

Linux has feature to automagically trace created children; other
platforms do not

Solution: Run syscalls like fork in a controlled environment: spin
child execution until we have the pid of the child.

August 2, 2013 13 / 25

Safe-fork

Problem: Tracing children created with fork

Linux has feature to automagically trace created children; other
platforms do not

Solution: Run syscalls like fork in a controlled environment: spin
child execution until we have the pid of the child.

August 2, 2013 13 / 25

Trampy (safe-fork)

Inject code:

fork();

send_pid();

while (1) {

sched_yield();

}

August 2, 2013 14 / 25

Multiple ABIs

Linux allows processes to use multiple ABIs...

Very messy:

I Instruction determines ABI

I ... but the cs register also has an effect

I Processes can mix ABIs at runtime

Strace does it wrong

August 2, 2013 15 / 25

strace?

I 25000 lines of code

I No architecture specific files

I In other words: death by ifdef

I get scno function is 450 lines long, all platform-specific code
inlined

I And... it doesn’t work (well)

August 2, 2013 16 / 25

strace gone wrong

64 bit program:

__asm__(

"int $0x80"

:

"=a"(pid)

:

"a"(20)

);

strace will see “writev”

Tracy does it properly

August 2, 2013 17 / 25

strace gone wrong

64 bit program:

__asm__(

"int $0x80"

:

"=a"(pid)

:

"a"(20)

);

strace will see “writev”

Tracy does it properly

August 2, 2013 17 / 25

strace cont.

...

writev(1, [{"", 0}, {..., 140736580874188}, {"", 0},

{process_vm_readv: Bad address

0x21, 140736581373952}, {process_vm_readv: Bad address

0x10, 395049983}, {process_vm_readv: Bad address

...

August 2, 2013 18 / 25

tracy output

...

1688 System call: getpid (20) Pre: 1

1688 System call: getpid (20) Pre: 0

...

Clue:

$./syscall 20

i386 getpid

x86_64 writev

August 2, 2013 19 / 25

tracy output

...

1688 System call: getpid (20) Pre: 1

1688 System call: getpid (20) Pre: 0

...

Clue:

$./syscall 20

i386 getpid

x86_64 writev

August 2, 2013 19 / 25

Application: Soxy

I Transparent proxifier using SOCKS 5.

I Like tsocks (or torsocks)

But does not use LD PRELOAD; so it will actually catch every
network system call.

However, currently Soxy is buggy when it comes to supporting all
the ABIs.

August 2, 2013 20 / 25

Application: Soxy

I Transparent proxifier using SOCKS 5.

I Like tsocks (or torsocks)

But does not use LD PRELOAD; so it will actually catch every
network system call.

However, currently Soxy is buggy when it comes to supporting all
the ABIs.

August 2, 2013 20 / 25

Application: Soxy

I Transparent proxifier using SOCKS 5.

I Like tsocks (or torsocks)

But does not use LD PRELOAD; so it will actually catch every
network system call.

However, currently Soxy is buggy when it comes to supporting all
the ABIs.

August 2, 2013 20 / 25

LD PRELOAD

Not an alternative; although may be more favourable in some
cases:

I Generally easier to use

I Depends on a certain library being loaded, does not work if
programs directly invoke system calls

August 2, 2013 21 / 25

Speed: kernel patch

Overhead: Context switches, performing system calls

Example:

r = ptrace(PTRACE_SETSYSCALLMASK, pid, 1, __NR_read);

r = ptrace(PTRACE_SETSYSCALLMASK, pid, 1, __NR_write);

r = ptrace(PTRACE_SYSCALLWHITELIST, pid, NULL, 0);

if (r) {

fprintf(stderr, "New API failed... :-(.\n");

kill(pid, SIGKILL);

waitpid(pid, &status, 0);

return NULL;

}

August 2, 2013 22 / 25

Future applications

Possibilities are endless:

I Buggy: Fault injection for application testing

I Jelly: Secure jail in userspace

I Fussy: FUSE in User Space (fake /dev/fuse)

I stracy: Proper strace

August 2, 2013 23 / 25

Future work

I Threadsafe ABI detection

I Research: How cross platform (or arch) can we become?

I Safely tracing children on *BSD: Safe-fork

I Speed: working on a proper kernel patch

I System call Intermediate Representation

August 2, 2013 24 / 25

Resources for Tracy

I Authors:
I Merlijn Wajer (Wizzup)
I Bas Weelinck (meridion)
I Jurriaan Bremer (skier)

I Idea: Ilja Kamps (Ikarus)

I Source, Documentation:
https://github.com/MerlijnWajer/tracy

I IRC: #tracy on Freenode

I http://hetgrotebos.org/wiki/Tracy

I ML: tracy@freelists.org

August 2, 2013 25 / 25

https://github.com/MerlijnWajer/tracy
tracy@freelists.org

