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Abstract

Presented is a uniform interface to trace the behaviour of programs by means
of the system calls they perform. Tracing by the user is done without regard
to kernel version, operating system or processor architecture. The interface,
called Tracy, provides a means to watch, modify, augment and restrict program
execution in a controlled environment.
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Chapter 1

Introduction

Programmers spend rather a large part of their time finding mistakes in their
computer programs. They usually refer to this routine as debugging and they
employ various tools to aid them in debugging programs.

Several kinds of debugging exist. The most common debugging method
is focussed around crashes in a program. Other types of debugging include
performance analysis and analysis of system calls performed by the program. A
system call is a method for a program to request a service from an operating
system’s kernel. The kernel of an operating system is the main component of
most operating systems; it is a bridge between the hardware and programs.

Inspecting (and modifying) the system calls performed by a program is done
programmatically using the ptrace system call. A program inspecting the sys-
tem calls of another program is said be to be “tracing” the other program. The
program that is being traced is called the “tracee” and the program tracing
the “tracee” is called the “tracer”. Tracing is a limited definition in the sense
that the term does not mention the possibility to modify the program that is
being traced. Using ptrace the tracer can also modify the tracee by reading
and writing to the memory of the tracee or even changing the system calls made
by the tracee.

1.1 Motivation

The ability to modify the program memory and registers 1 allows for a great
variety of applications. A possible application is the so called “jailing” of pro-
grams - only allow system calls that satisfy certain requirements and modify the
arguments to some system calls to effectively restrict the access of a program
to the system.

Other applications are transparently routing or inspecting all the network
traffic of a program. Being able to modify the system call arguments and return
value also allows for extensive stress testing of programs, one could fake being
out of available memory for example; or even randomly reject or fail system
calls.

Tracing programs is done using the ptrace system call on most2 UNIX

1Changing cpu registers allows for system call modification
2If the UNIX system supports ptrace.
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systems. Using ptrace directly to trace a program has several downsides: the
ptrace interface is not very programmer friendly: the interface is not standard-
ised (ptrace is not part of the POSIX[5] standard) and ptrace is not architecture
agnostic, meaning a tracer requires architecture specific code.

The Tracy research project has as its aim the the production of a cross archi-
tecture, programmer friendly system call tracing and modification framework
for the Linux kernel. During this research, we put emphasis on a few key areas:

• Safely tracing a program. A program should not be able execute system
calls that undetected.

• Creation of an API that is simple to use; yet provides very powerful func-
tionality such as the injection of system calls.

• Aforementioned API should be cpu architecture agnostic.

• Aforementioned API should be operating system agnostic, with the only
limitation that the operating system is a modern, UNIX-like operating
system with support for the ptrace system call.

1.1.1 Problems With Ptrace

First of all, we wanted to solve problems introduced by utilising ptrace directly.
As we have previously noted, a particular problem with ptrace is that the ptrace
interface to the programmer differs per platform. This means that ptrace code
written for Linux will most likely not work on another UNIX operating system
such as FreeBSD.

Different UNIX platforms also support different ptrace features. FreeBSD
offers a ptrace option to quickly read or write a large amount of memory of the
tracee, whereas Linux does not support reading more than a processor word at
a time. On the other hand, Linux has an ptrace option to automatically trace
any child processes created by a tracee; FreeBSD currently does not offer such
an option (Section 3.8.2).

The system call invocation differs per computer architecture. The assem-
bly instruction to invoke a system call usually differs. Kernels like Linux and
FreeBSD sometimes even support several ways to invoke system calls. ptrace
does not provide a way for the tracer to detect how the tracee invoked the
system call. This is problematic because the meaning of system call numbers
differs per system call invocation thus leading to inevitable amiguity about the
current system call being performed (Section 5.1).

The fact is that ptrace is a very low-level system call, which operates on
assembly level, therefore it is not possible to simply “change the return value”
of a system call. Each instruction set has its own registers and on top of that,
operating systems often have different uses for each register.

One would have to find out what register this is on each platform, keep
track if the current ptrace event describes the start or end of a system call3, let
alone perform some extra architecture-specific calls to ensure that the result is
properly set.4

3If the process is about to execute a system call or has just executed a system call
4ARM requires the programmer to call ptrace with the PTRACE SET SYSCALL com-

mand to make the changes to the system call register permanent.
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Finally, ptrace offers no mechanism to recieve events of specific system calls,
rather than on every system call. This leads to performance issues (Section 5.5).

1.1.2 LD PRELOAD

LD PRELOAD is a way to prioritize loading of certain libraries while creating
and loading a process. The LD PRELOAD environment variable controls which
libraries are loaded into a process before all other libraries are loaded.

One can use LD PRELOAD to load a shared object (a library) into a process,
before any other libraries (such as glibc) are loaded; this makes it possible to
(transparently) override functions typically provided by other libraries.

This mechanism can be used (amongst other) to create a proxyfier. Such
an “injected” library could provide its own “read” and “write” functions which
will be called by the program in favour of the default read and write functions.

One common proxyfier, tsocks, is an application that loads other applica-
tions with their own library that overwrites specific network functionality, thus
allowing transparent network routing.

LD PRELOAD relies on the dynamic loader and will only have any effect if
the programs have to make use of the libraries being loaded.

A downside to this approach is that LD PRELOAD simply does not work
on all programs; some programs do not use glibc methods and instead perform
system calls directly, for example by directly using assembly in their program.
Other programs are simply statically linked; which means libraries were linked
into the program at the time of the programs creation rather than when the
program is loaded; this makes LD PRELOAD useless in this case. Theoretically
it should be able to prioritize library loading even with statically linked libraries,
but this is beyond the scope of this research.

There are some upcoming languages that do not even use glibc at all -
languages like Go [4] talk to the kernel directly and thus perform their system
calls by calling the kernel directly instead of relying on (g)libc functions which
would in turn call the kernel.

LD PRELOAD is not a viable solution when one wants to transparently
capture all (specific) system calls of a process, independent on what kind of
userspace libraries the process uses.

1.2 Structure of This Document

In Chapter 2 we introduce Tracy, our ptrace based system call tracing and
modification library. An in depth explanation on how we implemented Tracy
and worked around ptrace issues is presented in Chapter 3. In Chapter 4, we
present an application of Tracy called Soxy: a transparent SOCKS5 (Section
4.2.1 proxifier Chapter 5 presents an overview of features that Tracy currently
lacks and features we would like to see implemented in Tracy. We complete the
paper with recap of the research, with a focus on goals set by the Tracy research
project.
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1.3 Terminology

We introduce a few terms that the reader will encounter throughout the docu-
ment. We assume that the reader is a least a bit familiar with the UNIX family
of operating systems.

• ABI: Application Binary Interface. Describes the low-level interface be-
tween computer programs and the kernel.

• Tracer: The program tracing other programs.

• Tracee: A program that is being traced by a Tracer.

Throughout the document, all system calls are identified by bold typesetting.
ptrace options are typically italic and can their description can be found in
Appendix B or in the ptrace manual page.
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Chapter 2

Tracy and Ptrace

This chapter provides a theoretical introduction to ptrace and its problems for
cross platform and cross architecture programming.

2.1 Introduction to Tracy

Several UNIX and UNIX-like systems support the ptrace system call, as intro-
duced in Section 1.1.

Tracy is a library that uses ptrace (See Section ??) to trace the system
calls of a process. Tracy can inspect, modify and even inject system calls.
Being able to modify system calls gives the controlling process the ability to
change arguments of system calls before system calls are executed - and even
the ability to “deny” system calls by changing the system call to a harmless one
such as getpid.

Obvious use cases for modifying system calls is a process called “sandbox-
ing”: intercepting and changing special system calls like open and prepend
(if not already in place) a specific path to the arguments such that the tracee
cannot open files outside a specified path.

ptrace is very platform and operating system dependent. The Tracy API
strives to be platform and operating system independent by applying architec-
ture and operating system dependent hacks and fixes “behind the scenes”. We
have tried to design Tracy to be as portable as possible - meaning that code
for computer architectures such as ARM and x86 should be nearly (if not com-
pletely) the same. Tracy elegantly works around most architecture specific issues
and implements functionality required to trace programs on several operating
systems.

Tracy introduces an API that allows a programmer to hook into specific
system calls, rather than every system call as is the case with ptrace; ptrace
does not differentiate per system call and delivers an event on each and every
system call.1 Tracy also has both a synchronous and asynchronous injection
API (Section 3.4) and Tracy keeps track of the state of a system call: if the
event is an event generated before a system call is executed; or after a system
call is executed.

1Of course, under the hood Tracy will have to handle every system call, whether the system
call is hooked or not. We propose a fix to this problem in Section 5.5
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Figure 2.1: Ptrace control flow

It can be useful to inspect and modify data pointed to by a system call
argument of tracee. To transparently and safely change these additional hacks
are required: both changing the contents directly as well as validating the value
when the child can still change the value are generally bad ideas: the first
interferes with the normal execution of the process (although this may be exactly
what the programmer wants) and the second is sensitive to race conditions. A
solution is presented in [8] and the feature in Tracy is planned, see Section 5.2).

Tracy has functionality to allocate memory in the tracee which the tracee
cannot write but only read; thus allowing the tracer to copy arguments to that
memory space, validate and change them as necessary; finally change the pointer
in the arguments to point to the memory space and continue the system call as
normal.

2.2 System Call Tracing, Modification and In-
jection

ptrace suspends the tracee and signals the tracer right before the tracee exe-
cutes a system call as well as just after the tracee has executed a system call.
When the tracee is stopped before a system call, we say that the tracee is in pre
system call state; if the system call has executed and the tracee has once again
been suspended we say that the tracee is in post system call state. While the
tracer is inspecting the tracee, the execution of the tracee is paused. (Figure
2.1)

When the tracee is suspended, the tracer can read and modify registers
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as well as read and write to the memory of the tracee. Combining these two
features, the tracer can:

• Modify the system call (number) that is executed.

• Modify the arguments to system calls of the tracee.

• Modify the instruction pointer (commonly called program counter), allow-
ing the tracer to resume the executing of the tracee at an entirely different
set of instructions.

• Inject system calls, by modifying the instruction pointer and changing the
system call number.

• Modify the return value of the system call.

2.3 Memory Access

To be able to fully modify a tracee, the tracer needs to be able to read and
write the tracee’s memory. If the tracer is to change arguments that point to
a specific page in the tracee’s memory - like a string, the tracer needs to be
able to write to the tracee’s memory - or share a small part of the tracers own
memory with the tracee.

Changing the memory of the tracee is usually not a good idea, as that could
interfere with the tracee’s execution. Instead, it would be a better idea to
allocate a few pages in the child and copy the data to those pages, change the
argument to point to the new pages and continue the system call. After the
system call has completed, the pages can be freed again. This way the child’s
original arguments are left untouched, and for a reason: the child may want to
re-use the memory later on.

Allocating pages in the tracee as described above is problematic if one wants
to make sure the tracee does not change the memory contents. ptrace suspends
only one process and each thread on Linux is a seperate process. Threads share
memory with other threads in the thread group and can thus write to the same
memory. If one thread is suspended, another thread can still write to the newly
allocated pages and change the data stored in the pages just before the system
call is executed and after the tracer has written data to the page. To safely
share memory, see Section 5.2.

2.4 Tracing Children

A tracee can spawn children by calling the fork2 system call. ptrace does not
automatically trace children of a tracee.

In certain cases, one may want to trace all the children of a tracee. To do
this, Linux supports specific ptrace options to automatically trace the tree of
children spawned by the tracee as well (See Section 3.2).

However, other platforms do not support these options and tracing children
of the tracee can be somewhat problematic. strace, a ptrace-based system and

2among other system calls: vfork, rfork (BSD), clone (Linux)
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Figure 2.2: One system call with ptrace

signal tracer does not trace every child immediately on creation, from the strace
manual page:

On non-Linux platforms the new process is attached to as soon as
its pid is known (through the return value of fork in the parent
process). This means that such children may run uncontrolled for a
while (especially in the case of a vfork), until the parent is scheduled
again to complete its (v)fork call.

We provide a solution to this in Tracy such that any children spawned by
the tracee will not run uncontrolled on any platform in Section 3.8.2.
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Chapter 3

Tracy Implementation

This chapter covers the implementation of Tracy using the ptrace api. Provided
in Appendix B is an overview of most of the ptrace api. We will discuss problems
we ran into while implementing Tracy, with a focus on ptrace limitations and
caveats.

3.1 Tracing a Process

Tracing a process can be done in two different ways. A process can either
attach to another running process, or create a child process and consequently
use ptrace in the child to make the parent (the original process, soon to be
the tracer) trace the child after which the child will call execve to run another
program.

3.1.1 Fork and Trace

As explained in the previous section, the parent issues a fork call. The child
then performs a ptrace call, with the PTRACE TRACEME argument.

The child then (by Tracy design) sends itself a SIGTRAP signal; and because
the child is being traced by its parent, the child is suspended until the parent
performs a wait followed by a call to ptrace to continue the process with the
PTRACE SYSCALL argument to ptrace. The parent can inspect and change
the child before it issues the continue call. The code demonstrating this can be
found in Appendix A.

3.1.2 Attaching

Attaching to an existing process is done using the PTRACE ATTACH mecha-
nism, which will attach a running process specified by the process id, granted
that the user has sufficient permissions to trace the process.

3.2 System Call Tracing

Tracing system calls with ptrace is done by issuing ptrace on the tracee with
the PTRACE SYSCALL option, this will make the tracee suspend on entry
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(pre) and exit (post) of the next system call. Resuming a suspended tracee is
done with the same option. Tracy uses this option on all the tracees.

Tracy keeps track of each child; it has to store information about the state
of the child: will the next stop be a system call entry or exit, or are we currently
injecting a system call? Aside from those two states, Tracy also has to do some
other internal bookkeeping such as store the number of the system call that is
being denied.

3.3 System Call Modification

Modifying system calls can be done at two points: before and after the system
call is executed. Changing the system call “after” it has been executed does not
undo the effect of said system call, but it allows the tracer to change result value
of the system call. 1 Changing values before the system call is executed is more
exciting, as it allows the tracer to actually change the system call. For example,
by modifying the register that stores the system call number, it is possible to
execute a completely different system call. This serves two purposes: “denying”
system calls by changing the system call register to a harmless system call such
as getpid and “injecting” system calls by changing the system call number and
later on the instruction pointer (See Section refsyscal-inject).

3.3.1 System Call Hooks

Users of the Tracy library can hook specific and even all system calls. For
each system call, the user provides a callback which will be called when the
related system call occurs. The callback is provided with full access to event.
The return value of the callback determines the action that Tracy will take. A
callback for signals also exists as well a callback default callback that is called
for all the system calls that are not hooked.

3.4 System Call Injection

Tracy supports injecting system calls into any process that is being traced. The
injection of a system call is the process of executing a system call in a specified
tracee, without requiring said tracee to explicitly call the system call.

Theoretically a system call can be injected at any point during the execution
(as discussed in Section 5.4), Tracy however can currently inject system calls in
a pre and post system call state. In other words, one can currently only inject
system calls when a tracee is stopped due to the tracee executing a system call;
not if the tracee is recieving a signal.

Transparent injection of system calls is not possible, in the most strict sense.
As most system calls indirectly affect the tracee (with the exception of system
calls like getpid and fstat), the tracee will usually be left in a modified state.
However, to perform system call injection as transparently as possible, we en-
sured that the registers before the injection are identical to the registers after
the injection.

1The tracer can of course change every register and the memory of the tracee at any point
when the tracee is suspended.
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Injecting system calls relies on that fact that the program counter (or in-
struction pointer) of the tracee can be modified. If the length of the system call
instruction is known, it is possible to “jump back” to the system call instruction,
as can be observed in Listing 3.1. Once the “int 80h” has finished; the system
call has completed; if we put the process instruction pointer back 2 bytes (the
size of the “int 80h” instruction), the program will execute another system call.
The system call is determined from the contents of the eax register (which we
can change), therefore we can execute any system call by simply changing the
contents of the eax registers and is required the registers that hold the system
call arguments.

Listing 3.1: Intel x86 Assembly that performs an “exit” system call. Taken from
http://www.fizik.itu.edu.tr/turhan/asm/mnasm.html

1 mov eax , 1 ; ’ e x i t ’ system c a l l
2 mov ebx , 0 ; e x i t wi th err or code 0
3 int 80h ; c a l l the k e r n e l

While the process of injecting a system call varies for each system call state
- pre or post - the idea is the same. Figure 3.1 shows the injection process for
both pre and post system call states. “Modify IP/PC” represents jumping back
to the system call instruction. Note that this instruction and the size of the
instruction differ per platform.

3.4.1 Asynchronous Injection in Tracy

Tracy supports asynchronous injection. Typically, when injecting a system call
in a tracee, Tracy waits for the system call that is being injected to complete
and then restores the tracee to its previous state. This process can be split into
two stages, readying the tracee to perform a system call and restoring the tracee
to its original state. No system call returns instantly and it may be favourable
to perform other tasks rather than waiting for the system call to complete.

Asynchronous injection is a way to inject system calls that allows Tracy to
handle system calls by other processes while Tracy is waiting for the injected
system call to finish, this can be useful as some system calls can take quite some
time. Once process A has finished its (injected) system call, Tracy will store
the return value and restore the process to its original state. Functionally this
makes no difference to the injection of a system call, but it does allow Tracy to
handle the requests of other (suspended) processes instead of simply waiting for
the system call of the tracee to finish.

While asynchronous injection is usually preferred, synchronous injection is
supported by Tracy as well and even used in Tracy internally where asyn-
chronous injection simply is not worth the extra work and effort.

3.5 Memory Access

Any program that uses the ptrace API will probably want to access the traced
process’ memory as well. Reasons can range from simply dumping pointer con-
tents to monitoring, changing or even injecting new system calls with completely
stand-alone data.
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(a) Injection from a pre state (b) Injection from a post state

Figure 3.1: Injection for pre and post system call states
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Unfortunately as with most ptrace functionality, memory access standards
differ from operating system to operating system and are also affected by archi-
tectural quirks. Tracy hides these differences and provides a uniform and fast
way to access memory.

3.5.1 On Linux

On Linux Tracy achieves fast memory access by employing a feature of the
“/proc” filesystem that was designed to work in unison with ptrace.

The classical way of accessing child memory on Linux was through the
PTRACE PEEKDATA and PTRACE POKEDATA operations. The downside
of this method is its dependence on C’s long type and the amount of data that
can be transferred. These ptrace operations are used to respectively read and
write individual processor words.

On Linux the C “long” type has the same size as the processor word size, so
32 bits on a 32-bit architecture and 64 bits on a 64-bit architecture.

This is where the trouble starts, not only is it not possible to simply read or
write single bytes of memory, whenever one wants to access say 4kb of memory,
depending on the architecture, this may require more than 1024 calls to ptrace.
The amount of time spent performing ptrace system calls.

Alternative: Using /proc

Linux provides another way to access memory of a process. The “/proc” filesys-
tem, used by a lot of utilities to provide information about kernel and process
state can also be used to access arbitrary process memory, given certain (security
related) requirements are met. Process information can usually be acquired by
opening a folder named “/proc/< pid >” where “< pid >” must be substituted
with the process identifier. In this folder several files, and folders, are contained
which provide information on things such as, threads, open files, memory maps
and memory contents.

The “/proc/< pid >/mem” file is the one used by Tracy to access child
memory. Opening this file will present child memory as one contiguous file
which can be modified using read and write..

This also means we can now write single bytes of memory without the need
of first reading a processor word. We can now read 4kB of memory with a single
system call or any arbitrary amount of memory provided we can allocate a large
enough buffer to contain the data.

One cannot simply open the “/proc/< pid >/mem” file of any arbitrary
process as this would cause a major security issue. The only processes capable
of successfully opening this file are either processes tracing the target process,
or super-user processes.

3.6 Event System

Tracy uses an event-based system to report on activities on a tracee. This is
particularly fitting as the waitpid call blocks until an event occurs. As a result
Tracy blocks until a new event occurs.
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Each signal and system call (pre and post) is an event. The Tracy function
tracy wait event waits for a action on (a specific or) any child and returns a new
Tracy event.

Aside from events for signals and system calls, Tracy also exposes another
event; an internal event which describes an internal Tracy event; this event is
required for asynchronous injection and may be used for other features in the
future.

3.7 Signals

Tracy obtains information about the signals directly from the waitpid call. The
waitpid call has an argument called status which contains the information about
the signal that was received. Retrieving the signal sent to the tracee is done
using the WSTOPSIG macro.

To pass a signal to a tracee, Tracy passes the signal number as data argument
to the ptrace PTRACE SYSCALL api call. This will resume the execution of
the tracee with said signal. If the data is left at zero, no signal is delivered.
This makes it possible to suppress certain signals by simply not passing them
along to the tracee.

3.8 Tracing Children

Tracing the child processes of a tracee very useful; it allows a tracer to truly
trace everything a process (and its descendants) does. On Linux, tracing all the
children of a tracee is relatively easy.

3.8.1 Linux

Linux 2.6 and onwards offer options to automatically trace all children cre-
ated by fork, vfork and clone. Respectively: PTRACE O TRACEVFORK,
PTRACE O TRACEFORK, PTRACE O TRACECLONE flags are passed to
ptrace to enable tracing of children.

3.8.2 Safe Execution of fork, vfork

On operating systems that do not support the PTRACE O TRACE* options,
another solution is required to ensure that all children are traced the moment
they are created. To achieve this, the fork (as well as vfork and clone) system
call must be executed in a controlled manner.

To implement this feature, we make use of system call injection as well as
the ability to be able to allocate and write to pages in the tracee. We allocate
a page in the tracee and write a few lines of assembly that will safely execute
fork to the page. Once this the assembly has been written, we deny the initial
fork call by changing the system call to getpid. In the POST-getpid callback,
we change the Instruction Pointer (or Program Counter) to the first instruction
in the newly allocated page.

Once the tracee starts executing the instructions in this page, the tracee will
once again execute a system call - fork in this case, and this time we allow the
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call to proceed. However, after the fork has completed and we have stored the
result of the call (the process id), both the tracee and the child execute the rest
of the instructions in the page.

The only other instructions in the page are a busy while loop that calls the
sched yield system call. Now that both the tracee and the child of the tracee
are caught in this while loop.

At this point we are still only tracing the tracee, but we can now use the
“attach” mechanism of ptrace to attach to the child of our tracee. Once we are
tracing the child of the tracee as well, we can restore the Instruction Pointer (or
Program Counter) of each tracee to their original position (that is, just after
the original fork call) and allow both processes continue their execution.

3.8.3 Caveats

When the feature to automatically trace newly created children in Linux is
turned on, the tracer will recieve a SIGSTOP signal event for the tracee that
has just been created. This signal is not passed along to the tracee. For this
reason, Tracy suppresses the first SIGSTOP that is sent to a newly create tracee
if the automatically trace children option is enabled.

3.9 Threaded Tracees

Threads on Linux are processes that share the same memory space and file
descriptor table. If a thread in a thread group of which all the threads are being
traced is suspended by ptrace; none of the other threads in the thread group
are suspended. Each thread in the thread group have the same process ID but a
unique thread ID; see the manual page of gettid. Threads (and thus, processes)
on Linux are created using the Linux-specific clone system call2. The clone
system call allows the programmer to specify if the created process shares certain
attributes with its parent, such as the memory space, file descriptor tables and
file system attributes.

To reliably trace opened files and sockets, programmers need to know what
threads (or more general: processes) share file descriptor tables (and memory).
To complicate matters, the unshare system call allows a process to venerate
its file descriptor table as well as its file system attributes. When a process
(thread) separates its file descriptor table, all the file descriptors are cloned into
a new table, which is then unique to the calling process.

At the time of writing Tracy does yet implement helper functions to easily
find out how processes relate to each other and what resources they share with
other processes. We plan to add such functionality in the future.

3.10 Performance in Ptrace

When a tracee performs a lot of system calls, the overhead of ptrace becomes
very noticeable. The main issue is that for every system call the kernel has
to perform four context switches. The first switch is suspending the tracee
and replacing the tracee with the tracer (Tracy), then Tracy issues a few (at

2glibc uses clone() if the user invokes fork()
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least two) system calls (which require entering kernel mode), the kernel then
resumes the tracee (another context switch); once the system call of the tracee
is completed, the tracee is suspended again and the tracer takes over (context
switch number three), again performing at least two ptrace system calls and
finally the tracee is resumed again (context switch number four).

This entire process is repeated for every system call, be it the inexpensive
getpid system call or the fairly expensive clone system call, they are all a
lot slower for the tracee due to this overhead of suspending and resuming the
tracee.

The problem is that ptrace does not allow the reporting of specific system
calls only - the tracer has to handle every single system call event, even if the
tracer will take no other action than resume the tracee on most of the system
calls.

We present a (theoretical) solution to this problem in Section 5.5.

3.11 Caveats

While implementing Tracy and more specifically our “Safe Execution of fork and
vfork” (Section 3.8.2) code, we ran into a few problems. The clone system call
does not take the same arguments on different Linux platforms and retrieving
the process id from the vfork system call proved to be another challenge.

3.11.1 clone

The Linux specific clone system call is a bit problematic, for several reasons.
The clone system call interface differs per architecture; on x86 clone has one ar-
gument extra compared to AMD64; and Linux on x86 also swaps two argument
registers 3.

3.11.2 vfork

We ran into a slight problem with vfork in our safe execution (Section 3.8.2)
feature: vfork only returns the pid of the child after the child has executed an
exevce call; our safe execution of fork feature relied on the fact that we could
imprison both the parent and then child, first read the pid from the return
value of fork (and clone). With vfork, we had to perform additional hacks. We
modified the execution environment of the child to include a call to kill with
Tracy as a target (and the signal set to SIGUSR1 to notify Tracy the tracer) of
the pid of the new child, after which we attach to the child and remove it from
the safe execution environment as normal.

3This can be observed in Linux 3.4 arch/x86/kernel/entry 32.S and
arch/x86/kernel/process.c
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Chapter 4

Soxy

In order to show the power and features of Tracy, as well as finding bugs and
improving the API, we have developed Soxy, a proxifier 1 on top of Tracy which
works solely on existing binaries (that is, executables which do not provide such
functionality natively.)

Soxy has the unique ability to tunnel all (or a subset of) the network traffic
created by a process (either a child processes or a running processes) over a
proxy based on the SOCKS5 2 protocol.

The server which will be used as proxy server must be configured to accept
and tunnel SOCKS5 data. There are several proxy daemons available, including
ssh.

4.1 Python Bindings

Besides Soxy, which demonstrates an example usage of the Tracy library, we
also provide Python bindings, allowing rapid development of applications which
utilize Tracy. As a matter of facts, Soxy has been implemented using the Python
bindings, ensuring the correctness and efficiency of these bindings.

The Python bindings provide a similar, but even easier, API for using Tracy.
For example, a pre-syscall hook on write which duplicates the write system

call (i.e. write the same string twice) looks like the following.

def hook wr i te ( ch i ld , event , args ) :
i f c h i l d . pre :

c h i l d . i n j e c t ( args . s y s c a l l , a rgs )

4.2 Soxy Internals

4.2.1 SOCKS5

Complete documentation of the SOCKS5 algorithm can be found in RFC 1928
3. The global flow for TCP connections is as follows.

1An application which tunnels internet traffic through another server
2RFC 1928 - SOCKS5 Protocol
3RFC 1928 - SOCKS5 Protocol
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• Application connects to the Proxy Server

• Optionally the application performs some sort of authentication

• A request containing the destination address is sent

• Server replies with success or failure

• Proxy connection has been established

After the proxy connection has been established, the protocol does not need
any further work, because all incoming and outgoing traffic goes through the
proxy server.

4.2.2 Implementation

Soxy implements the SOCKS5 protocol as follows, using hooks on the socket
and connect system calls. When a socket is created, using the socket system
call, Soxy determines whether the socket is TCP or UDP based. Following,
when the socket attempts to connect to another machine, using the connect
system call, Soxy injects a few system calls in order to connect to the proxy
server, authenticate, and establish the proxy connection.

4.2.3 Asynchronous Sockets

Sockets are synchronous by default, also known as blocking sockets. When
performing an operation on a blocking socket, the thread will hang until the
operation has been finished or an error code can be returned. Applications which
handle multiple sockets at once, however, tend to use asynchronous sockets, also
known as non-blocking sockets. Non-blocking sockets return immediately when
operating on them, which allows an application to handle multiple sockets at
once, without hanging the application.

For Soxy this means that the connect system call returns immediately. How-
ever, Soxy attempts to establish a connection to the proxy server and perform
authentication as well as to send over the destination address before returning
from the connect system call to the application. In order not to make the un-
derlying algorithms of Soxy too complex, Soxy makes the socket blocking until
the SOCKS5 authentication has been performed (either successfully or with an
error code.) After the socket has been initialized with success, Soxy makes the
socket non-blocking again.

The state of a socket can be obtained and altered using the fcntl 4 system call,
using the F GETFL and F SETFL commands respectively. In order to make a
socket non-blocking, the O NONBLOCK flag should be set. By checking the
state of the socket against the O NONBLOCK flag, Soxy determines whether a
socket is blocking.

4.2.4 Differences in Architectures

There are two major differences between the x86 and AMD64 architecture.
Namely the fact that x86 has one system call to perform all socket operations,

4fcntl - manipulate file descriptor
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whereas AMD64 has different system calls for different operations. (That is,
x86 has the socketcall 5 system call.)

For AMD64 support Soxy only intercepts three different system calls; socket,
connect, and close. For x86 support Soxy intercepts the socketcall system call,
upon intercepting a socketcall system call Soxy determines the type of operation
(socket, connect, close, or something else) and, if it is one of the socket, connect,
or close system calls it then retrieves the arguments to the function and calls the
according function (as if it had been a system call intercepted on the AMD64
platform.)

4.2.5 Proxifying UDP Traffic

Although currently not implemented, Soxy aims to support UDP traffic as well.
However, there are barely any SOCKS5 daemons which support tunneling UDP
traffic (e.g. sshd does not support tunneling UDP.)

Proxifying UDP traffic offers another interesting challenge. Because one can
set the address and port of an UDP packet when sending the packet itself, the
SOCKS5 protocol works accordingly. When tunneling UDP traffic, the data of
every regular UDP message is prefixed with the destination address and port.
Soxy working on a client-parent basis requires the parent to write extra data in
the client, however, not only does Soxy have to write the address and port, it
also has to move the original buffer. This is because of the fact that the buffer
which will be sent over UDP has got to be continous. In other words, Soxy
allocates memory in the child, writes the address and port, and appends the
original packet data to the data in the allocated memory.

There is no good solution to this problem, but possible techniques include.

• Allocate enough memory every time an UDP memory is sent

• Keep a list of allocated memory maps

• Perform UDP traffic synchronous

Whereas the first technique remains low on memory, it might be quite slow
because every read and write operation involving UDP makes Soxy allocate
memory in the child and free it afterwards (i.e. two extra system calls and
a lot of extra overhead.) The second technique, however, might exhaust the
application and/or system of memory, because it pre-allocates a certain amount
of memory pages. And, finally, the third technique is a trade-off in speed; it
does nt require much memory and performing one operation on an UDP socket
is fairly cheap, but it may become slow especially when there is a lot of UDP
traffic.

5socketcall - socket system calls on AMD86
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Chapter 5

Future Work

This chapter elaborates on features that are currently lacking in Tracy to achieve
the set goals by the research project as well as features that we would like to
see in the future.

5.1 Secure ABI Mixing

On some platforms such as AMD64 and ARM Linux implements several ABIs.
These ABIs are invoked differently and for the tracer it is not easy to tell what
ABI is being used to invoke the system call. The problem here is that each
ABI (sometimes) has different system call numbers, which means that read on
AMD64 ABI is not the same as the 32 bit ABI on the AMD64 platform. Tracy
currently always assumes a AMD64 ABI on 64 bit and the x86 abi on 32 bit.
This is not just a functional issue (not being able to properly identify a 32 bit
ABI system call) but a security problem because it allows any tracee to “fake”
Tracy into thinking it is doing system call A where it is in fact doing system
call B; Tracy will not call the proper hook function and (if told to do so) may
deny the wrong system call or even worse, not deny the system call at all.

In a sense not being able to identify the system call ABI can be seen as
a limitation of the Linux ptrace API. It should be possible to integrate sup-
port for identifying the system call ABI in the Linux kernel by using a sys-
tem that is already in place: the PTRACE O TRACESYSGOOD extension. If
PTRACE O TRACESYSGOOD is enabled, the kernal sets bit 7 of the signal
being delivered to the tracer; this makes it easier to distinguish between a nor-
mal SIGTRAP signal and a trap caused by a system call of a tracee. The kernel
could expose (and set) another bit (or more) which would indicate the ABI of
the current system call.

However, a kernel change is not an immediate solution and would require
all users of Tracy to install a very recent Linux kernel or even apply a patch to
their current kernel.

Another solution to the problem of identifying the ABI of the current system
call would be to read the current assembly instruction (that is, the assembly
instruction at the instruction pointer).
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AMD64 uses a different instruction to perform a system call than the 32 bit
ABI; which means we can use that instruction to differentiate the two ABIs.
There are a few caveats however: it is possible that the instruction in the pro-
gram (memory) and the instruction in the cpu pipeline are not the same; a
program could use another thread to intentionally wipe out or change the in-
struction that was used to invoke the system call, which would result in Tracy
reading a faulty or fake instruction.

To prevent another thread in the process to change the instruction we can
use the mprotect system call to mark the memory as read and execute only
(not writable), which would make it impossible to change the contents of the
memory without calling mprotect to mark the memory as writable. Calling
mprotect from a tracee will however be noticed by Tracy, upon which Tracy
can take appropriate actions (such as allow the memory to be written but mark
it read and execute only after the write has occurred and make sure the cpu
pipeline is flushed). A related technique is called W ˆX 1.

One could even go as far as cache the system call instructions of each tracee
so they do not have to be read again until a tracee changes its own instructions.

Even though now yet supporting identifying the ABIs is a serious security
issue, it is also mainly important when someone wants to be completely sure that
every single system call is traced. Most programs also do not usually modify
their own instructions; nor do they create their own instructions that perform
32 bit system calls in a 64 bit process. Examples of programs that do create
instructions on the fly are Just In Time (JIT) compilers.

5.2 Memory Sharing Between Tracer and Tracee

When one wants to inject a system call into a tracee; the tracee needs to be
able to read the arguments and the data that arguments may point to. One way
to make the data available in the tracee is by simply allocating memory in the
tracee and have the arguments point to the newly allocate memory to which the
data is written. This approach is sensitive to race conditions, as threads (that
are not currently suspended) may be able to read (and perhaps even write) to
the newly allocated memory. A solution to this problem is presented in [8] and
we plan to implement such as solution and add it to the Tracy API.

5.3 Threaded Tracees

As discussed previously in Section 3.9, Tracy needs an API to describe what
resources are shared amongst tracees. To Tracy, each thread is a new tracee.
When managing resources of tracees, it is pertinent to know exactly what re-
sources (file descriptors, memory) are shared. Tracy will in the near future
support an API to query what resources a tracee shares with other tracees.

1https://en.wikipedia.org/wiki/W%5EX
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5.4 Instant Injection Using Signals

An interesting addition to Tracy would be the ability to inject a system call
even when a tracee is not performing a system call: that is, when the tracee
is not stopped. We can simply stop the tracee by sending it a signal will kill;
which will automatically suspend the tracee as ptrace gives us complete control
over the tracee. So, before the signal is actually received by the tracee, we have
control over the tracee and we can resume it later while suppressing the signal
that should never be delivered as we only send the signal to suspend the tracee
and gain control.

Once the tracee is suspended, we can jump to some previously crafted as-
sembly similar to our safe fork code (Section 3.8.2), and execute a system call
by simply invoking the system call instruction and modifying the arguments
and system call instruction in Tracy. Once the system call has completed we
can store the return code and jump back to the original code, and the finally
resume the tracee.

The process just described can also be used to inject system calls in the
signal hook exposed by Tracy.

While it would not be too hard to implement support for this particular
feature, we have postponed the feature due to time constraints. We also did not
find the feature particularly useful because Tracy is event based, which means
that in most cases the tracee is already stopped.

5.5 Improving Ptrace Performance

As previously discussed in Section 3.10, the overhead of ptrace is very notice-
able when a tracee performs a lot of small and inexpensive system calls - they
suddenly become very expensive.

The problem boils down to the fact that ptrace currently has no mechanism
which allows the tracer to only get notified on specific system calls, so that other
system calls can execute without requiring intervention from the tracer.

It then follows that this performance issue can be solved by adding such an
API to the Linux kernel.

We wrote a simple Linux kernel patch (against Linux 3.4) to demonstrate
our claim and we also added experimental support for this feature to Tracy.

However, the patch is incomplete and lacks features such as support for mul-
tiple ABIs (Section 5.1).

The API is very basic and allows one to add (and delete) specific system
calls to a list. This list can then either function as a whitelist or a blacklist, in
other words, the Linux kernel either notifies the tracer of all the system calls in
the list, or notifies the tracer of all system calls but the system calls in the list.

Because Tracy is aware of the all the system calls that are hooked by the
program using Tracy, Tracy can make informed decisions about system calls
that do not need to be received - as they would never result in a hook in the
event system (Section 3.6) being executed.

Unless Tracy uses this particular system call internally, Tracy could decide
to advice the kernel to not notify Tracy of in the event that this particular
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system call is executed.

5.6 Threaded Tracer

As the number of tracees for a single Tracy instance increases, the likelyhood
of Tracy becoming a bottleneck increases. Since Tracy is single threaded, it is
very possible a lot of tracees will have to wait on Tracy to resume their execution.

We believe that it is possible to add multithreading support to Tracy where
each thread can perform its own waitpid. Access to certain datastructures in
Tracy will have to be guarded with semaphores, but we think multithreading
will be both viable to program and an effective wait to increase the performance
of Tracy with a lot of tracees.

5.7 BSD Support

Support for Tracy on the BSD variants is planned, but will require some ad-
ditional work. We have not extensively examined ptrace and system calls in
general on BSD variants, but a few things jumped out.

BSD uses rfork instead of Linux’ clone and BSD also does not support
automatically tracing processes created by a tracee. While we can emulate this
effectively with Tracy’s safe fork Section(3.8.2) the Tracy code still requires
some work.

Apart from this functional difference, there is also a difference in how BSD
variants treat the system call arguments. Arguments of a system call are pushed
onto the stack (the last parameter is pushed first). [1]

Alternatively, if Linux emulation is enabled, BSD variants (at least FreeBSD)
also support the Linux way of system calls, by passing the arguments in registers
in the same manner as Linux.

BSD also returns errors differently than Linux (although again, it supports
Linux emulation). BSD sets the “carry flag” upon failure and sets the error in
the register of the return code, whereas Linux sets the register of the return
code to the negative equivalent of the error number[2].
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Chapter 6

Discussion

As stated in Section 5.1, Tracy is not yet able to safely trace processes, the solu-
tion presented in Section 5.1 should however eliminate all currently known ways
to “escape” from Tracy. Implementation of the aforementioned solution will also
require the ability to “understand” multiple ABIs as presented in Section ??.
We believe that upon completion of features “Secure ABI Mixing” (Section 5.1)
and “Threaded Tracees” (Section 5.3), Tracy will be fit for creating programs
which require safe tracing, such as a jail.

We believe that the Tracy API is relatively simple. The API provides func-
tionality that is not easily implemented using ptrace and also provides a solid
and platform agnostic base for tracing applications. As mentioned in Section
5.3 the API will be extended to support thread detection and the ability to
query what resources are shared amongst specific processes.

Creating a completely cpu architecture agnostic program is possible with
Tracy, but we have found that in certain cases, such as Section 4.2.4, it is
simply not possible to create code that works on all architectures without archi-
tecture specific code, because the Linux system call API differs per architecture.
This makes it impossible to inject or hook a system call such as socket with-
out writing architecture specific code. Normal programs are not hindered by
this design flaw as they mostly rely on glibc, which works around architecture
specific quirks. We do not plan to extend the Tracy API to cover this kind of
architectural differences. As a result, some programs that rely on Tracy will
still need architecture specific code.

Writing operating system independent code should be viable once Tracy
works on a BSD variant (see Section 5.7). However, if a programmer decides
to rely on (or inject) operating system dependant system calls, the resulting
program will obviously not work on all platforms. However, we believe that the
tracing and system call modification and injecting part of Tracy should work
on all platforms Tracy supports without architecture specific code on the users
end.

The fact that Tracy programs are not completely architecture and operating
system agnostic raises the question of the impact on supporting several archi-
tectures in one code base. We believe that most architecture quirks will be due
to differences in the Linux system call API. However, the changes required to
work around these issues should be relatively small in comparison to writing
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code which utilises ptrace directly for each architecture.

The performance of a tracee is highly dependent on the amount of system
calls the tracee performs. As noted previously (Section 3.10, Section 5.5) the
performance of a tracee suffers when the tracee performs a lot of system calls.
We have presented a possible (simplistic) solution but we see no short-term so-
lution to the performance issues. The performance issues however should be
neglectable when tracing a program that doesn’t perform a lot of IO.

The viability of a cross platform tracing framework is demonstrated by Soxy,
which implements a ptrace-based proxifier in three hundred lines of C code.
Soxy can trace relatively simple programs such as curl and irssi, but it also
succesfully traces complex programs such as firefox and ssh. We believe that
even with Tracy’s current limitations, it should be possible to write complex
applications that utilise Tracy for system call tracing and injection.

Once we support more architectures1, we will be able to further investigate
the cross architecture promise.

1We currently support ARM, x86 and AMD64
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Appendix A

Creating and tracing a
process with ptrace(2)

pid = fo rk ( ) ;

/∗ Child ∗/
i f ( pid == 0) {

r = ptrace (PTRACE TRACEME, 0 , NULL, NULL) ;
i f ( r ) {

f p r i n t f ( s tde r r , "PTRACE_TRACEME failed.\n" ) ;
e x i t ( 1 ) ;

}

raise (SIGTRAP) ;

execve ( . . . ) ;

/∗ . . . ∗/
}

i f ( pid == −1)
return NULL;

waitp id ( pid , &status , WALL ) ;
s i g n a l i d = WSTOPSIG( s t a t u s ) ;
i f ( s i g n a l i d != SIGTRAP) {

return NULL;
}

/∗ Resume c h i l d and t e l l p t race to stop at the next system c a l l ∗/
r = ptrace (PTRACE SYSCALL, pid , NULL, 0 ) ;
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Appendix B

ptrace(2) API

Every method except for PTRACE TRACEME is called by the tracer.

PTRACE TRACEME Called by a process to make the parent of the process
a tracer. This is forcibly called by the first child that
is spawned by Tracy.

PTRACE ATTACH Attach to process.
PTRACE DETACH Detach from a tracee.
PTRACE SYSCALL Continue the execution of the tracee, stopping at the

next system call or signal event.
PTRACE PEEKDATA Read a word (long) from a tracee.
PTRACE POKEDATA Write a word (long) to a tracee.
PTRACE GETREGS Returns the cpu registers of a tracee.
PTRACE SETREGS Set the cpu registers of a tracee.
PTRACE SETOPTIONS Set a ptrace option of a tracee.

Table B.1: Basic ptrace api
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The following table provides an overview of the Linux specific ptrace options
set using PTRACE SETOPTIONS.

PTRACE O TRACESYSGOOD When delivering a system call trap, bit 7 in the signal
is set: SIGTRAP|0x80.

PTRACE O TRACEFORK Stop the tracee at the next fork event and automati-
cally tracee any children created. The child is started
with SIGSTOP.

PTRACE O TRACEVFORK Stop the tracee at the next vfork event and auto-
matically tracee any children created. The child is
started with SIGSTOP.

PTRACE O TRACECLONE Stop the tracee at the next clone event and auto-
matically tracee any children created. The child is
started with SIGSTOP.

PTRACE O TRACEEXEC Stop the tracee at the next execve system call and
report the death of each thread.

PTRACE O TRACEVFORKDONE Stop the tracee (parent) at completion of the vfork
call.

PTRACE O TRACEEXIT Stop the tracee before exit.

Table B.2: Linux-specific ptrace options
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